Phosphorylation regulates c-Myc's oncogenic activity in the mammary gland.

نویسندگان

  • Xiaoyan Wang
  • Melissa Cunningham
  • Xiaoli Zhang
  • Sara Tokarz
  • Bryan Laraway
  • Megan Troxell
  • Rosalie C Sears
چکیده

Expression of the c-Myc oncoprotein is affected by conserved threonine 58 (T58) and serine 62 (S62) phosphorylation sites that help to regulate c-Myc protein stability, and altered ratios of T58 and S62 phosphorylation have been observed in human cancer. Here, we report the development of 3 unique c-myc knock-in mice that conditionally express either c-Myc(WT) or the c-Myc(T58A) or c-Myc(S62A) phosphorylation mutant from the constitutively active ROSA26 locus in response to Cre recombinase to study the role of these phosphorylation sites in vivo. Using a mammary-specific Cre model, we found that expression of c-Myc(WT) resulted in increased mammary gland density, but normal morphology and no tumors at the level expressed from the ROSA promoter. In contrast, c-Myc(T58A) expression yielded enhanced mammary gland density, hyperplastic foci, cellular dysplasia, and mammary carcinoma, associated with increased genomic instability and suppressed apoptosis relative to c-Myc(WT). Alternatively, c-Myc(S62A) expression reduced mammary gland density relative to control glands, and this was associated with increased genomic instability and normal apoptotic function. Our results indicate that specific activities of c-Myc are differentially affected by T58 and S62 phosphorylation. This model provides a robust platform to interrogate the role that these phosphorylation sites play in c-Myc function during development and tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and Cellular Pathobiology Phosphorylation Regulates c-Myc's Oncogenic Activity in the Mammary Gland

Expression of the c-Myc oncoprotein is affected by conserved threonine 58 (T58) and serine 62 (S62) phosphorylation sites that help to regulate c-Myc protein stability, and altered ratios of T58 and S62 phosphorylation have been observed in human cancer. Here, we report the development of 3 unique c-myc knock-in mice that conditionally express either c-Myc or the c-Myc or c-Myc phosphorylation ...

متن کامل

Kinase-Inactive Glycogen Synthase Kinase 3B Promotes Wnt Signaling and Mammary Tumorigenesis

Recent studies have implicated ectopic activation of the Wnt pathway in many human cancers, including breast cancer. B-catenin is a critical coactivator in this signaling pathway and is regulated in a complex fashion by phosphorylation, degradation, and nuclear translocation. Glycogen synthase kinase 3B (GSK3B) phosphorylation of the NH2-terminal domain of B-catenin targets it for ubiquitinatio...

متن کامل

Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis.

Recent studies have implicated ectopic activation of the Wnt pathway in many human cancers, including breast cancer. beta-catenin is a critical coactivator in this signaling pathway and is regulated in a complex fashion by phosphorylation, degradation, and nuclear translocation. Glycogen synthase kinase 3beta (GSK3beta) phosphorylation of the NH2-terminal domain of beta-catenin targets it for u...

متن کامل

Hunk negatively regulates c-myc to promote Akt-mediated cell survival and mammary tumorigenesis induced by loss of Pten.

The protooncogenes Akt and c-myc each positively regulate cell growth and proliferation, but have opposing effects on cell survival. These oncogenes cooperate to promote tumorigenesis, in part because the prosurvival effects of Akt offset the proapoptotic effects of c-myc. Akt's ability to counterbalance c-myc's proapoptotic effects has primarily been attributed to Akt-induced stimulation of pr...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 71 3  شماره 

صفحات  -

تاریخ انتشار 2011